
Asynchronous Progressive Irregular Prefix Operation in HPF2

Fréd́eric Bŕegier, Marie-Christine Counilh, Jean Roman
LaBRI, ENSERB et Université Bordeaux I, 33405 Talence Cedex, France

Published in an IEEE conference act : PDP’2000, IEEE copyrighted
(this file is intended for private use only)

Abstract

In this paper, we study one kind of irregular computa-
tion on distributed arrays, theirregular prefix operation,
that is currently not well taken into account by the
standard data-parallel language HPF2. We show a
parallel implementation that efficiently takes advantage
of the independent computations arising in this irregular
operation. Our approach is based on the use of a di-
rective which characterizes an irregular prefix operation
and on inspector/executor support, implemented in the
CoLuMBO library, which optimizes the execution by using
an asynchronous communication scheme and then commu-
nication/computation overlap. We validate our contribution
with results achieved on IBM SP2 for basic experiments
and for a sparse Cholesky factorization algorithm applied
to real size problems.

KEY WORDS: HPF2, irregular application, prefix op-
eration, run-time support, inspection/execution mechanism,
loop-carried dependencies

1. Introduction

High Performance Fortran (HPF2 [10]), the standard lan-
guage for writing data parallel programs, is quite efficient
for regular applications. Nevertheless, efficiency is still a
great challenge when irregular applications are considered.

In this paper, we study one kind of irregular computation
on distributed arrays that we call irregular prefix operations.
This kind of computation occurs in important irregular al-
gorithms such as sparse Cholesky factorization.
Our goal is to propose a parallel implementation of this
irregular operation that efficiently takes advantage of the
independent computations arising in it. This implementa-
tion is based first on the use of a directive which speci-
fies that a loop performs an irregular prefix operation; sec-
ond, on an inspector/executor support, implemented in the
CoLuMBO library, which optimizes the execution phase

by using an asynchronous communication scheme and then
communication/computation overlap.

This paper is organized as follows. In section 2, we de-
fine an irregular prefix operation on a vector. We present
different ways of writing it in HPF2 and show the limits
of these versions. Then, we present ourPREFIX clause
and directive for irregular prefix operation and we describe
our implementation based on the inspection/execution ap-
proach. Finally, we present some related works. Section 3
describes our experimental work on IBM SP2. We present
first some basic experiments in order to study and ana-
lyze the contribution of our approach. Then, we present
an experimental study for sparse Cholesky factorization ap-
plied on real size problems, which confirms its interest. Fi-
nally, section 4 concludes and gives some perspectives to
our work.

2. Progressive Irregular Prefix Operation

2.1. Definition

A prefix operation on a vector is an operation where each
element of the output vector is a function of the elements
of the input vector that precede it. For instance, the prefix
sum of the input vectorC of sizeN is the output vectorX
where: ∀i ∈ [1, N] Xi =

∑
1≤k≤i

Ck .

Prefix operations are very useful in data parallel pro-
gramming and they have been included in the HPF library.
So, efficient parallel implementations of these operations
are possible.

An irregular prefix operationis such that each element
of the output vector is a function of an arbitrary subset of the
elements of the input vector that precede it. For example:

∀i ∈ [1, N] Xi =
∑
k∈Bi

Ck where Bi ⊆ [1, i] .

We define aprogressive irregular prefix operationon one
vector as an irregular prefix operation, where the input and

output vectors are the same. More precisely, each output
elementX(i) depends on theoutputvalues of the elements
X(k), k ∈ Bi andk < i, and on the input valueX(i). So
these values are computed by step (in worst case, step by
step), so theprogressiveattribute. Moreover, functions can
be applied to each element during the prefix operation (g)
and to each element of the result (f). For instance:

∀i ∈ [1, N] Xi = f(
∑
k∈Bi

g(Xk)) where Bi ⊆ [1, i] .

Progressive irregular prefix operations on distributed
vectors (more generally arrays) are useful in irregular ap-
plications, for example in sparse matrix applications such
as sparse Cholesky factorization. Our goal is to propose a
parallel implementation that efficiently takes advantage of
independent computations (ifj 6∈ Bi andi 6∈ Bj , thenXi

andXj can be computed in parallel).

2.2. Progressive Irregular Prefix Operation in HPF2

In this section, we present different ways of writing an
irregular prefix operation in HPF2 and we show the limits
and disadvantages of each of these versions.

Program 1 shows two Fortran codes with two nested DO
loops. In Program 1(a), theBi (i = 1, N) sets are replaced
by a 2-dimensional arrayB whereB(i,:) contains the
NB(i) elements of theBi − {i} set. Program 1(b) uses a
symmetric approach by using the 2-dimensional arrayBs
such that: K ∈ Bs(I,:) ⇔ I ∈ B(K,:) (so, ele-
ments inBs(I,:) belong to]I,N]). In these programs,
the I andJ loops are notINDEPENDENTloops because
each element ofX is computed from some of the elements of
X that precede it. These loops are no moreINDEPENDENT
loops with reduction statement since a reduction variable
cannot be used in a reduction statement (more precisely,
the referenceX(K) is forbidden in the statementX(I) =
X(I) + X(K) ; cf. [10, pp. 71-76]). So, without any in-
formation about the properties of the loops, a HPF compiler
will generate an inefficient serial SPMD code based on the
owner computes rule.

In Program 2, we use a temporary variable (TMP) so that
the inner loopJ is an INDEPENDENTloop with reduc-
tion. This loop can be simply and efficiently implemented:
each processor uses a private accumulator variable associ-
ated with the reduction variable and performs a subset of
theJ loop iterations. When it encounters a reduction state-
ment, it updates its own accumulator variable. After the
loop, the final value of the reduction variable is computed
by combining the private accumulator variables using the
reduction operator. In an MPI based implementation, the
MPI Reduce function could be used for thiscombining
operator. But due to the indirect access (X(B(I,J))), the
compiler will consider that all the processors take part in the
collective communication at each iterationI even though it

DO I = 1, N (a)
DO J = 1, NB(I)

X(I) = X(I) + g(X(B(I,J)))
END DO
X(I) = f(X(I))

END DO

DO I = 1, N (b)
X(I) = f(X(I))
DO J = 1, NBs(I)

X(Bs(I,J)) = X(Bs(I,J)) + g(X(I))
END DO

END DO

Program 1. Prefix sum (a) and prefix sum in symmetric
form (b)

is not always necessary. So processors are synchronized at
every iteration.

DO I = 1, N (a)
TMP = 0.0

!HPF$ INDEPENDENT, REDUCTION(TMP)
DO J = 1, NB(I)

TMP = TMP + g(X(B(I,J)))
END DO
X(I) = X(I) + TMP
X(I) = f(X(I))

END DO

DO I = 1, N (b)
TMP = 0.0
TMP2 = 0.0
DO J = 1, NB(I)

if (X(B(I,J)) is local) then
TMP2 = TMP2 + g(X(B(I,J)))

end if
END DO
REDUCTION(TMP2, SUM)
TMP = TMP + TMP2
if (X(I) is local) then

X(I) = X(I) + TMP
X(I) = f(X(I))

end if
END DO

Program 2. Prefix sum with reduction (a) and its SPMD
code (b)

Finally, the array prefix functions (XXX PREFIX) and
scatter functions (XXX SCATTER) of the HPF library are
not well suited to express irregular prefix operations and
successive calls to these functions with appropriate mask
vectors should be required. For example, the mask array
that can be used in a prefix function to specify the elements
of the vector that contribute to the result is not enough: here,
each element of the result requires a specific mask (that rep-
resents the subsetBi).

None of the versions presented here can lead to a parallel
implementation that allows parallel computations on some
elements of the result. In the following section, we intro-
duce a directive and a clause that may help a compiler to do
so.

2.3. The PREFIX Clause and Directive

The PREFIX(prefix-variable) directive can precede a
DOloop. It asserts the compiler that iterations in the fol-
lowing DOloop computeprefix-variableas the result of an
(irregular) prefix operation.

The PREFIX(prefix-variable) clause is used with an
INDEPENDENTdirective and it asserts that the named vari-
able is update in theINDEPENDENTloop by a series of op-
erations that are associative and commutative. This clause
is always relative to a declared surroundingPREFIX DO
loop. The syntax ofprefix-variableandprefix-statementis
the same asreduction-variableandreduction-statementde-
fined in HPF2. The difference between theREDUCTION
andPREFIX clauses is that a reference to aPREFIX vari-
able can occur in the operand part of aPREFIX statement.
But, in this case, thePREFIX clause of theINDEPENDENT
loop asserts the compiler that only final values (and not in-
termediate values) of thePREFIX variable are used within
this loop. We consider Program 1 Version b. In this pro-
gram, we know thatX(I) gets its final value at iteration
I (in the statementX(I) = f(X(I))), and thatX(I) is
never read before iterationI nor modified after this itera-
tion. So we can use thePREFIX clause and directive to
obtain Program 3.

!HPF$ PREFIX(X)
DO I = 1, N

X(I) = f(X(I))
!HPF$ INDEPENDENT, PREFIX(X)

DO J = 1, NBs(I)
X(Bs(I,J)) = X(Bs(I,J)) + g(X(I))

END DO
END DO

Program 3. HPF2/PREFIX code for an irregular prefix
operation

In the following section, we show how a compiler can
use the directive and clause introduced here.

2.4. Code Generation for a Prefix Do Loop

To implementINDEPENDENTloop with prefix state-
ment, we use the same mechanism as for reductions (cf.
section 2.3) by using a private accumulator variable that has
the same shape than thePREFIX variable. For Program 3,
on each processor, the private accumulator (cf. Program 4)

is an array (TMP(1:N)). Unlike a reduction implementa-
tion, the combining operation is performed for only one
element at a time of the prefix array variable. More pre-
cisely, the combining operation which computes the final
value ofX(I) from the local variablesTMP(I) (Reduc-
tion (TMP(I), SUM)) must be performed within the
externalPREFIX loop; moreover, it must be executed after
the last write access to each private variableTMP(I) and
before the first read access toX(I) .

In some simple cases, the compiler can determine the
position of the combining operation. In Program 3, it may
be performed at the beginning of iterationI sinceX(I)
is read for the first time at the beginning of this iteration
andTMP(I) is written only before iterationI (according
to thePREFIX clause). But, in Program 4, this combin-
ing operation is still performed in a synchronous way. So,
we propose to introduce asynchronism in communication in
order to overlap communication by computation, and more
precisely, to separate the send calls and the receive calls as-
sociated with the combining operation forX(I) so that:

1. the send call is performed independently and as soon as
possible on each processor (i.e. when the correspond-
ing private variableTMP(I) has its own final value),

2. the receive calls are performed as late as possible by
the processor that ownsX(I) (i.e. before its first read
operation ofX(I) outside a prefix statement).

TMP(1:N) = 0.0
DO I = 1, N

REDUCTION(TMP(I), SUM)
if (X(I) is local) then

X(I) = X(I) + TMP(I)
X(I) = f(X(I))
DO J = 1, NBs(I)

TMP(Bs(I,J)) = TMP(Bs(I,J)) + g(X(I))
END DO

end if
END DO

Program 4. SPMD pseudo-code for Program 3

To enable such an execution, an inspection step is re-
quired to determine when local computations onTMP(I)
are over so that it can be sent, and which processor subset
effectively contributes to the final value ofX(I) (the owner
of X(I) must receive only from these processors).

The inspection step (cf. Program 5(a)) consists
in three parts. The first one only registers an ar-
ray as aprefix variable (Insp Prefix Data). The
second part is a local one: each processor scans its
local accesses to theprefix variable. The calls to
Insp Prefix Statement(X(Bs(I,J))) count the
read/write accesses toX(Bs(I,J)) within the prefix

statement; the Insp Prefix Access(X(I)) call de-
termines which processor needs the final value ofX(I) . Fi-
nally, the third part (Insp Prefix Done) is in two steps:
first, all processors gather their local information by using
global communications; then each processor locally keeps
only the relevant information.

Insp_Prefix_Data(X(1:N)) (a)
DO I = 1, N

if (X(I) is local) then
Insp_Prefix_Access(X(I))
DO J = 1, NBs(I)

Insp_Prefix_Statement(X(Bs(I,J)))
END DO

end if
END DO
Insp_Prefix_Done()

DO I = 1, N (b)
if (X(I) is local) then

Prefix_Access(X(I))
!receive: combining operation

X(I) = f(X(I))
DO J = 1, NBs(I)

TMP(Bs(I,J)) = TMP(Bs(I,J)) + g(X(I))
Prefix_Statement(X(Bs(I,J)))

!send when ready
END DO

end if
END DO

Program 5. Inspector(a) / Executor(b) SPMD
pseudo-code of Program 3

The execution step (cf. Program 5(b)) uses two routines:
Prefix Statement andPrefix Access . Each call
to Prefix Statement(TMP(Bs(I,J))) decreases
the counter resulting from theInsp Prefix State-
ment(X(Bs(I,J))) calls in the inspector step. When
this counter reaches zero, the processor sends the value
of its private accumulator variableTMP(Bs(I,J)) . The
Prefix Access(X(I)) call performs the receive oper-
ations and combines the received values to yield the final
value ofX(I) . Only one combining operation can appear
for each prefix variable element (according to thePREFIX
clause). So only the firstPrefix Access call for each
element is required. Since all following accesses are on the
sameprefix variableelementX(I) (excepting the access
to theprefix variablefor theprefix statement), the compiler
can optimize the executor code by removing the subsequent
Prefix Access calls (which could have take place be-
fore theprefix statement). Anyway, all subsequent calls will
be ignored by the run-time support.

So, the inspection/execution steps of Program 5 enable
an “asynchronous execution of the prefix operation” where
communication can be overlapped by computation. Note

that Program 1(a) could also be written by using thePRE-
FIX clause and directive. But, in this program, the last write
access to the accumulator variableTMP(I) takes place just
before the first read access toX(I) . So, in the correspond-
ing SPMD code, the send and receive operations would take
place side by side after theENDDOof the J loop and be-
fore the statementX(I) = f(X(I)) . Consequently, this
version presents no overlap capabilities and looks like Pro-
gram 2.

Note that if the global loop is declared asPREFIX but
the INDEPENDENT, PREFIX(X) directive on the inter-
nal loop is omitted, the same inspection/execution scheme
can be applied with a slight difference: the basic commu-
nication scheme is a broadcast (not a reduction) since the
compiler will apply theowner computes ruleon the internal
loop (for Program 3 without the internal directive,X(I)
will be broadcast). For simplicity, we omit this case in this
paper.

We have implemented this inspection/execution scheme
in our CoLuMBO library. We have incorporated three im-
plementation optimizations that are not shown, for simplic-
ity, in the SPMD codes. The first optimization limits the
size of the private accumulator array to its relevant part sav-
ing memory space. The second optimization consists in the
scan of sections instead of single elements of the prefix vari-
able array so as to save memory space and time. The third
optimization consists in the reception of pending commu-
nications before the correspondingPrefix Access call
in order to avoid the saturation of the MPI communication
buffers.

2.5. Related Work

To our knowledge, progressive irregular prefix opera-
tions have not been studied in the context of HPF or HPF-
like languages as FortranD [16], Vienna Fortran [14] or
HPF+ [3].

Inspector/executor paradigm has been widely used but
for solving iterative irregular problems in which communi-
cation and computation phases alternate; indeed, in those
kinds of applications, the cost of optimizations performed
at the inspector stage can be amortized over many compu-
tation iterations at the executor stage. Major works include
PARTI [16] and CHAOS [11] libraries used in Vienna For-
tran and Fortran90D [15] compilers, and PILAR library [12]
used in PARADIGM compiler [2]. These libraries are based
on agather/scatter approach and use the same opti-
mized communication scheme on every (or at least many)
iteration. So they do not address such asynchronous prefix
operation since each iteration of thePREFIX loop has its
own communication scheme.

The PILAR [13] library uses sections as minimal in-
spected elements, as our CoLuMBO library does. This is

necessary in order to produce an efficient inspector in most
cases, since the minimal element considering in Fortran pro-
grams is often, at least, a section of array and not a single
element.

3. Experimental Validations

3.1. Basic Experiments

This section studies the interest of our approach with
some experimental validations achieved from the three
SPMD codes given at Program 2, Program 4 and Program 5.
Note that for Program 5, all measures will include inspec-
tor times. In our experimentation, the value ofN is 1200
andX is a 2-dimensional array (300× 1200) and has a(*,
CYCLIC) distribution. The costs of functionsf andg vary
from 300 Flops to 400 KFlop. We also use various coeffi-
cientsc of irregularity characterized by the ratio (in percent)
of the number of elements in each subsetBi with the corre-
sponding maximal possible number: soc = 100% meansi
elements inBi (Bi = [1, i] andB(I,J) = J, 1 ≤J<I);
in general,c meansi × c elements inBi. So the lower the
coefficient, the lower the irregularity or the number of ele-
ments inBi.

We first compare Program 2 and Program 5 with a fixed
cost for functionsf andg (cost = 10 KFlop). We measure
the time ratio of Program 5 compared to Program 2 both
executed with various combinations of processor numberp
and coefficientc . Figure 1 gives the results achieved for
p = 4, 8, 16 andc from 100 to 1%. For a fixed num-
ber of processors and a fixed function (f andg) cost, we
define theprefix balance coefficientas the coefficient of ir-
regularity such that Program 2 and Program 5 have the same
execution time (time ratio= 1.0) (for example, this prefix
balance coefficient is4.6% for 4 processors and function
cost = 10KFlop).

First of all, we can see that the lower the coefficient, the
better the results of asynchronous prefix version (time ratio
from 2.0 to 0.5). For Program 4, the time ratios compared
to Program 2 (not shown) are always bad (from 6.0 with
c = 100% to 2.0 withc = 1%). This result shows the great
interest of the asynchronous communication approach for
the combining operation.

Figure 2(a) gives the prefix balance coefficient for var-
ious combinations of the processor number and function
cost. For a fixed computation cost, one sees that increas-
ing the number of processors increases the corresponding
prefix balance coefficient. The reason is that the number
of implied communications increases when more proces-
sors are involved, so there is more capability of overlapping
communications by computations.

If we fixed the number of processors, so increasing the
elementary cost, the number of communications does not

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

100 33.3 20 14.3 11 9.1 7.7 6.7 4.8 2.4 1.6 1.2 1.0

T
im

e
R

at
io

 (
P

ro
g.

 5
 /

P
ro

g.
 2

(b
))

�

Prefix Coefficient (%)

Prog. 2(b)
Prog. 5 - 4 Proc
Prog. 5 - 8 Proc

Prog. 5 - 16 Proc

Figure 1. Time ratios vs. Prog. 2 with various
coefficients of irregularity and processors ((f,g) fixed

cost (10KFlop))

change but computations can better overlap communica-
tions since there are more expensive. To obtain again the
prefix balance coefficient, we can therefore have more com-
munications, so, with a fixed number of processors, the
higher the elementary cost, the higher the prefix balance
coefficient. We also observe that the prefix balance coef-
ficient becomes stable (between 7 and 10%) after a certain
elementary cost (40 KFlop). We suppose that this stability
is probably due to some overlap limitations or to some basic
example specificities.
Another contradiction appears with the execution on 16 pro-
cessors. It is in fact due to the lack of computation on so
many processors, which introduces a scalability problem.
Figure 2(b) presents the relative efficiencies of Program 5
with 8 and 16 processors compared to 4 processors with a
coefficient of irregularity equals to the balanced prefix co-
efficient on 4 processors. With 0.3 and 1 KFlop and such
low coefficients (2.6 and 1.8% respectively), there are low
efficiencies (around 30%) on 16 processors. The compu-
tations have a very low cost, so only communications are
taking into account in the relative efficiencies. Therefore,
we measure in fact the relative efficiencies of asynchronous
communications compared to synchronous ones. In order
to obtain again the balanced prefix coefficient when there is
a scalability problem, we must increase the amount of com-
putations by increasing the coefficient, so the results on 16
processors.

Finally, we have measured the inspection cost with re-
spect to a global execution. In our experiments, the inspec-
tion time represents between 1 to 8% of the global execution
time. These good performances show the interest of the im-
plementation optimizations performed in the inspector (cf.
2.4).

Shortly, these basic experiments show first that the lower
the coefficient of irregularity, the better the performance of

0

2

4

6

8

10

12

14

16

18

20

0.3 1 10 40 90 200 400

P
re

fix
 B

al
an

ce
d

C
oe

ffi
ci

en
t

�

Costs (f,g) in KFlop (a)

4 proc.
8 proc.

16 proc.

30

40

50

60

70

80

90

100

0.3-2.6 1-1.8 10-4.5 40 90-7.7 200-7.7 400-7.7

R
el

at
iv

e
E

ffi
ci

en
ci

es
 (

%
)

�

Costs (f,g) in KFlop - Balanced Coefficients on 4 processors (b)

8 proc.
16 proc.

Figure 2. Prefix balance coefficients on various
processors with various (f,g) costs (a) and Relative
efficiencies compared to 4 processor times with fixed

(f,g) costs (b)

asynchronous prefix version, and second that efficiency is
achieved even with only one executor step (unlike a stan-
dard inspector/executor approach which requires many ex-
ecutor steps to repay the inspector cost).

3.2. Cholesky Example

We describe here the experimental results we have ob-
tained for an important computation arising in many sci-
entific and engineering applications: the sparse Cholesky
block factorization [8, 7, 1]. In this application, each col-
umn block is updated by some column blocks to its left on
the sparse matrix; the subsetBi ⊆ [1, i] of column blocks
depends here on the sparsity structure of the matrix. More
precisely, the structure of the application is closed to the
extended HPF program presented in Program 3.

We then compare the three following versions of the
Cholesky application:

• the FIR version (Program 6) is closed to the SPMD
code in Program 4 using a reduction operation;

• the FIP version (Program 7) is closed to Program 5
using a specific inspection phase and an asynchronous
communication scheme;

• the MPI version refers to a hand-made high-optimized
MPI version presented in [9].

The FIR andFIP versions use other optimizations not
presented in this paper for handling irregular applications
in HPF2. In both versions, the sparse matrix data structure
is represented by using thetree notation, introduced in [4],
based on the derived data type of Fortran 90. This notation
avoids indirect data accesses coming from the standard ir-
regular programming style, so that both compile-time and
run-times techniques can be more easily performed. Both
versions use theprocessor subsetoptimization in order to
restrict the scope of communications associated with each
iteration only to the required processor subset [4]. Finally,
they also use atask schedulingoptimization (SCHEDULE
directive) where each iteration of the outer loop is associ-
ated with a task. Due to the irregularity property of the pre-
fix operation, some tasks are independent from other tasks
and can be executed in parallel (or in any order). The goal
of our task scheduler is to order the task execution so as
to minimize the global execution time while respecting the
dependence constraints [6].

!HPF$ SCHEDULE (J = 1:K-1, bj = 1:NB(J), &
ANY(A(J)%BCOL(bj)%BLOC) in A(K)%BCOL(1)%BLOC)

DO K = 1, NB_BLOC_COL
!HPF$ ON HOME (A(J), J = 1:K-1, &

ANY(A(J)%BCOL(:)%BLOC) in A(K)%BCOL(1)%BLOC) &
, BEGIN

TMP%BLOC%VAL = 0.0
!HPF$ INDEPENDENT, REDUCTION(TMP%BLOC%VAL)

DO J = 1, K-1
Update A(K)%BCOL with A(J)%BCOL ! (BLAS)

END DO
A(K)%BCOL(:)%BLOC%VAL += TMP%BLOC%VAL
LLt A(K)%BCOL(:)%BLOC%VAL ! (LAPACK + BLAS)

!HPF$ END ON
END DO

Program 6. FIR HPF Pseudo Code

!HPF$ PREFIX (A(:)%BCOL(:)%BLOC(:,:)%VAL)

!HPF$ SCHEDULE (J = 1:K-1, bj = 1:NB(J), &
ANY(A(J)%BCOL(bj)%BLOC) in A(K)%BCOL(1)%BLOC)

DO K = 1, NB_BLOC_COL
!HPF$ ON HOME (A(K)), BEGIN

LLt A(K)%BCOL(:)%BLOC%VAL ! (LAPACK + BLAS)
!HPF$ INDEPENDENT, PREFIX(A%BCOL%BLOC%VAL)

DO J = K+1, NB_BLOC_COL
Update A(J)%BCOL with A(K)%BCOL ! (BLAS)

END DO
!HPF$ END ON

END DO
Program 7. FIP HPF Pseudo Code

Two libraries have been developed to support these op-
timizations. The TriDenT library [4] supports distributed
trees. The CoLuMBO library supports all the inspec-
tor/executor techniques that we have designed especially for
irregular processor subsets, irregular loop index inspection
[4], task scheduling [6] and irregular prefix operations.
We currently use these libraries by writing HPF2 codes with
explicit calls to TriDenT and CoLuMBO primitives. Then,
we use the HPF compilation platform ADAPTOR [5] to ob-
tain the final SPMD codes.

Matrix C.B. Col. NNZ NOp Av. Coeff.
BCSSTK32 4286 44609 5.5 M 1.3 GFlop 0.368%
GRID 511 8216 261121 12 M 2.5 GFlop 0.121%
OILPAN 8024 73752 9.5 M 3.35 GFlop 0.129%
CUBE 31 1050 29791 8 M 5.5 GFlop 3.599%
CUBE 39 1129 59319 22 M 22 GFlop 4.518%

Figure 3. Properties of different sparse matrices

Experiments have been performed on IBM SP2 with
16 processors on various sparse matrices whose character-
istics are described in Figure 3 (the number of Column-
Blocks (C.B.), of Columns (Col.), of non zero elements
(NNZ) and of operations (NOp)). The last column gives
the average coefficient of irregularity. The average coef-
ficient means that each column-blockI has (on average
since each column-block has its own subsetBi) I ×c left-
column-blocks which contribute to its irregular prefix op-
eration. Matrices are distributed according to thesubtree-
to-subcubemapping [7] using anINDIRECT format; this
mapping leads to an efficient reduction of communication
while keeping a good load balance between processors.

Figure 4(a) gives the execution times obtained in sec-
onds (for FIR and FIP versions, for global (inspec-
tion+execution) time and for execution time). TheFIP ver-
sions are clearly better than theFIR ones (the gain varies
from 3 to 62% for global time and from 0 to 35% for exe-
cution time). This great improvement comes from the asyn-
chronous communication scheme, which allows communi-
cation/computation overlap. As noted in our basic experi-
ments (cf. section 3.1), we can see that the lower the co-
efficient of irregularity, the higher the gain of theFIP ver-
sion with regard to theFIR version. We can also note that
the inspector time is proportional to the number of column-
blocks (in accordance with the inspector SPMD code) and
to the number of elements inBi.

Finally, Figure 4(b) shows the time ratio of theFIR and
FIP versions with regard to the MPI version. We can see
that the ratio between the global time and the MPI time
grows as the cost of the inspector time (from 1.2 for CUBE
31 to 3.5 for BCSSTK 32). However, when we consider
only the execution time, the ratio is only about 1.11 to 1.18,
except for the BCSSTK 32 (1.42, probably not enough work
for a good scalability) forFIP and about 1.16 to 1.84 for
FIR .

0

2

4

6

8

10

12

14

B
C

S
S

T
K

 3
2

2D
 G

R
ID

 5
11

O
IL

P
A

N

C
U

B
E

 3
1

C
U

B
E

 3
9

T
im

es
 in

 s
ec

on
d

�

(a) FIR Insp+Exec
FIP Insp+Exec

FIR Exec
FIP Exec

MPI

1

1.5

2

2.5

3

3.5

4

B
C

S
S

T
K

 3
2

2D
 G

R
ID

 5
11

O
IL

P
A

N

C
U

B
E

 3
1

C
U

B
E

 3
9

T
im

e
R

at
io

 v
s

M
P

I

(b) FIR Insp+Exec
FIP Insp+Exec

FIR Exec
FIP Exec

Figure 4. Times (a) and Time ratio (b) of Cholesky
factorizations on different matrices on 16 processors

Ratio between regular HPF code and hand-made MPI
code is generally about 1.50, and is worst in irregular appli-
cation. So the results presented here show the great interest
of our approach to obtain efficient irregular codes based on
irregular prefix operations. This approach combines inspec-
tor/executor techniques for processor subset, task schedul-
ing and asynchronous prefix operations.

4. Conclusion

The new PREFIX clause and directive added to the
HPF2 language with an appropriate inspector/executor
mechanism enable an efficient implementation ofprogres-
sive irregular prefix operations. The proposed execution
optimizations are based on an asynchronous communica-
tion scheme and communication/computation overlap. The
CoLuMBO library is our run-time support for this inspec-
tor/executor. The experimental results achieved on basic ex-
amples and on a sparse Cholesky factorization applied on
real size problems show the great interest of our approach.

Our future work is to study some other kinds of irregu-

lar computations such as unbalanced computations, and to
extend our approach to the new SMP architecture, which in-
volves both message passing and shared memory program-
ming styles. We have implemented a prototype source-to-
source compiler, not shown in this paper, which is able to
translate simple HPF2 codes with our new directives and
clauses into HPF2 codes with the corresponding inspec-
tion/execution code. So, we also study the possibility to
transfer our knowledge of its implementation into a real
HPF compiler in order to allow the compilation of more
complicated HPF2 source codes.

References

[1] C. Ashcraft, S. Eisenstat, J.-H. Liu, and A. Sherman. A
Comparison of Three Column Based Distributed Sparse
Factorization Schemes. InFifth SIAM Conference on Par-
allel Processing for Scientific Computing, 1991.

[2] P. Banerjee, J. Chandy, M. Gupta, J. Holm, A. Lain,
D. Palermo, S. Ramaswamy, and E. Su. The PARADIGM
compiler for distributed-memory message passing multi-
computers. InThe First International Workshop on Parallel
Processing, pages 322–330, Bangalore, India, Dec. 1994.

[3] S. Benkner. HPF+: High Performance Fortran for advanced
scientific and engineering applications.Future Generation
Computer Systems, 15(3):381–391, 1999. also in Tech. Re-
port TR 99-1 fromInstitute for Software Technology and
Parallel Systems, University of Vienna, with E. Laure and
H. Zima.

[4] T. Brandes, F. Bŕegier, M.-C. Counilh, and J. Roman. Con-
tribution to Better Handling of Irregular Problems in HPF2.
In Proceedings of EURO-PAR’98, volume 1470 ofLNCS,
pages 639–649, Southampton, UK, Sept. 1998. Springer-
Verlag. Also available as a LaBRI Research Report RR
120598, 1998.

[5] T. Brandes and F. Zimmermann. ADAPTOR — A trans-
formation tool for HPF programs. In K. M. Decker and
R. M. Rehmann, editors,Programming environments for
massively parallel distributed systems: working conference
of the IFIP WG10.3, Ascona, Italy, pages 91–96, Cam-
bridge, MA, USA, Apr. 25–29 1994. Birkhauser Boston Inc.

[6] F. Brégier, M.-C. Counilh, and J. Roman. Scheduling loops
with partial loop-carried dependencies. Submitted to Special
Issue on “Parallel Computing for Irregular Applications”,
2000.

[7] K. G. et al. Parallel Algorithms for Matrix Computations.
SIAM, Philadelphia, 1990.

[8] A. George and J.-H. Liu.Computer Solution of Large Sparse
Positive Definite Systems. Prentice-Hall, Englewood Cliffs,
NJ, 1981.

[9] P. Henon, P. Ramet, and J. Roman. A Mapping and Schedul-
ing Algorithm for Parallel Sparse Fan-In Numerical Factor-
ization. In LNCS, editor,Europar’99 Parallel Processing,
number 1685, pages 1059–1067, Toulouse, France, Aug.
1999.

[10] HPF Forum.High Performance Fortran Language Specifi-
cation, Jan. 1997. Version 2.0.

[11] Y.-S. Hwang, B. Moon, S. Sharma, R. Ponnusamy, R. Das,
and J. Saltz. Runtime and Language Support for Compiling
Adaptive Irregular Programs on Distributed Memory Ma-
chines.Software - Practice and Experience, 25(6):597–621,
1995.

[12] A. Lain. Compiler and Run-time Support for Irregular Com-
putations. PhD thesis, University of Illinois, 1996.

[13] A. Lain and P. Banerjee. Exploiting spatial regularity in
irregular iterative applications. InProceedings of the 9th
International Symposium on Parallel Processing (IPPS’95),
pages 820–826, Los Alamitos, CA, USA, Apr. 1995. IEEE
Computer Society Press.

[14] S. Mukherjee, S. Sharma, M. Hill, J. Larus, A. Rogers,
and J. Saltz. Efficient Support for Irregular Applications
on Distributed-Memory Machines. InACM SIGPLAN Sym-
posium on Principles & Practice of Parallel Programming
(PPoPP), pages 68–79, July 1995.

[15] R. Ponnusamy, Y. Hwang, R. Das, J. Saltz, A. Choudhary,
and G. Fox. Supporting Irregular Distributions in Fortran
90D/HPF Compilers.IEEE Parallel and Distributed Tech-
nology, 1995. Technical Report CS-TR-3268 and UMIACS-
TR-94-57.

[16] J. Wu, R. Das, J. Saltz, H. Berryman, and S. Hiranandani.
Distributed Memory Compiler Design for Sparse Problems.
IEEE Transactions on Computers, 44(6):737–754, 1995.

