OpenLSD HowTo

Author: Frédéric Brégier under LGPL

PRESENTATION 1
STANDARD EXTERNAL JAR VERSIONSuuuutiiiiieeiiiiittteeeeeeeeiiiteeeeeeeeeesisasesseeeeessissssssesesssstsssssesssesssssssssessssmmsisssesesessmnnnes 2
SPECIFIC EXTERNAL JAR VERSIONScciiiiiutittiieeieeiitteeeeeeeeeesiteeeeseeseesissseseeeeeesssssssssesesssstsssssesssesssssssssesessmsssssesssessnnsnes 2
THE GLOBAL LOGICcoiieuutieiieeeieeeieeeeeeeeeesaeeeeeeeeeesisaseseeesseessstassssesseesatasseseeseeastaaseseeeesaasttaseseeessansstaseeesessensaarseeseeenns 3
OPENLSD PROJECT IS ORGANIZED IN DIFFERENT DIRECTORIESccoeeiiiiiiiirrieeeeeiiiiiereeeeeeeiiiseeeeeseseonnsasesssessonssnseeseeesns 3
OPENLSD IS THEN SUBDIVIDED IN MULTIPLE JARSuuvtvitiiiiiiiiitieeieeeeeeiiiaeeeeeeeeesssaasesseeeeesssssseessessosssssesssesssmsisssesseeess 3
SOME OTHER DIRECTORIES ARE PRESENT IN OPENLSDooviiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeaeseaesesseesesssesssesssesssssessnennes 4
OPENLSDWEBIMPL CONTAINS THE FOLLOWING EXAMPLESuuuuuiiiiiiiiinisnnsnnnnnsnnsnsenssnnsnsnnnsnnsnnsnnnnsnnsnnnnsnnnsnsssssnnnnnns 4
OPENLSD CONTAINS THE FOLLOWING EXAMPLE SCRIPTSuuuuuuuuuiuuiiuesunesenssssensnnnnnnnsssnnnssnssssssssnnssnsnssnssssssssssssssssnsnnnnnnns 4

o AGIIN JUTCHIOTIS «oveeeeeiee et eeteeeeiee et e et e e tee et e e bt e sateessbeesabeessbeessbaeasseessteeasseeasseeanseesssaeanseesssaeanseennsesanseennss 4
o CRECK JUNCTIONS. ...veeeeeeeeeeiee et ettt ettt et e et e e tt e e te e s et e e teesasteenteesssbesaseesssbeenseeensbeensaeanssaensaesnsseenseesnssennseas 5
o Document RANAIING JUNCTIONS:ccueeeueeeeiieeiieeeiteeseeeeteeeeiteeteesteesteesseessseesseesssaessseessseessseesssesssseessseensseens 5
o TIPOTE FUNCIIONS. <.ooonveeeeeeeeeiee ettt e et tte et e s tee st eeesteeeabeessbeeeabeeasseessbeeasseesssaessseeasbeeansaessseenssaensseennseens 5
o DELETE FURNCTION.ooeveeeee ettt ettt e et e s bt e s bt e e sbee e baessbeesabeessbeessseeasseesssaeasseeasbeeassaesnseensseensseennsenns 6
o MUILIPLE SUPPOTT FUNCIIONS: «.oeveeeeeieeeieeeeieeeetteeetteeeteeeteeeaeeebeessteeeabeessseesssaessseesssaessseessseeasseesssesnsseessseennseens 6

HOW TO INSTALL OPENLSD 8

HOW TO INSTALL TOMCAT LSD INSTANCE WITH ORACLE 10

HOW TO MODIFY CONFIGURATION FILES 11
[©0) 14 125 ¢ U= €LY § DTSR 11
[0) 34230 5 D X @ € F SRR 12
LEGACY NS . XML..ouviviiiiiiiiiiieeieeeeeeeetaaeeeeseeeesstasseeseeeeeasaasesseesseastassssssesseesstsssseeeseeassssseseeesssssssssssesessennaasssesessensrsrenrees 15
(013 21) 5) 02 X) 2/ € SRR 16
) 52 1524 /| SRRSO 17
ADAPT ANY VALUE AS WANTED IN OPENLSD.COMMON.LSDCONSTANTSuvvviiiiiiiiitiereeeeeeeiiitrreeeeeeeeensneeeeseeseesnnneees 19

HOW TO EXTEND TO A NEW DATABASE SUPPORT 21

Presentation

OpenLSD is based on 3 eclipse packages. For each of them, you have to open them in eclipse as
separate projects (OpenLSD, OpenLSDWebImpl, OpenLSDC).
1. OpenLSD main project
2. OpenLSDWeblImpl sub project for web support (using servlet in Tomcat)
3. OpenLSDC which proposes some optimization written in C but is not mandatory
(getFileFromPath and openlsddu available for Windows, AIX)

A fourth project OpenLSDImpl is included and is about an example of extension-rewrite of the
Business part so as to explain how to use the OpenLSD Framework.
Optionally there is the module fast_md5S which enable optimization to compute MDS5 using a C

library (“.dII” under windows, “.s0” under Linux or AIX as tested until now).

The project depends on external jars. Most of them are the standard up to date version. Some of
them are using one specific version or adapted version. All of them are in ALLJARS.zip.

Standard external jar versions

e Commons apache libraries:
o commons-fileupload-1.2.jar
o commons-io-1.3.2.jar
o commons-codec-1.3.jar
o commons-lang-2.3.jar
e XML support:
o dom4j-1.6.1.jar
o jaxen-1.1.1jar
e MINA and relevant libraries:
jzlib-1.0.7.jar (compression support)
slf4j-api-1.5.0.jar (log support)
logback-access-0.9.8.jar
logback-classic-0.9.8.jar
o logback-core-0.9.8.jar
e Factory resource for JDBC from Tomcat:
o commons-el.jar
o naming-factory.jar
o naming-factory-dbcp.jar
O naming-resources.jar
e Oracle support:
o ojdbcl4.jar or ojdbcS.jar or 0jdbc6.jar
o nls_charsetl2.jar or orail8n.jar
e PostGreSQL support:
o postgresql-8.2-505.jdbc4.jar (JDK6)
o postgresql-8.2-505.jdbc3.jar (JDK4 and JDKS5)
e MySQL support:
o mysql-connector-java-5.0.4-bin.jar

o
(@)
o
(@)

Specific external jar versions

e MINA and relevant libraries:
o Mina-2-M2 (as today): Mina-2-Pre-M2.jar and Mina-2-Pre-M2-ASW-Common.jar
(this is an extension for HTTP support using MINA where OpenL.SD only uses the
common part for the HTTP codec): both fixed validated version for this project
e OpenLSD support:
o fast_md5.jar and the relative “so” or “dll” library in C if wanted (modified version
for the java version). The Native library is available for Windows, Linux (from the
original author) and for AIX 5.3.

Versions of JAR are constructed with JDKG6. If you want to use JDKS, it works but you have
to download source files of dependant project to get JAR in JDKS format.

The global logic

f OpenLSD Server \
Interface using network with MINA
File systems handler

Optional: OpenLSDC
getFileFromPath written in C to replace internal functions in Java
K openlsddu written in C to replace “du —ks” Unix function j

-~

\

OpenLSD Clients \ K OpenLSDWebImpl \
(get, put, delete, move documents, shutdown Allows get, put, start or shutdown ...
LSDServer ...)
Use network with MINA
Use network with MINA Use JDBC to connect to database
Use JDBC to connect to database Business logic from Clients

Business logic inside

AN)

No database is needed for OpenLSD Server since it does not assign index, those are given by
the client through the message. The OpenLSD Client is responsible to take care about the
business logic and also the database support (whatever the database is) and to assign one new
index when necessary. The main reason of this organization is to enable a stable development
of the Server part, whatever the Client does.

For one application, one team will have therefore to only focus on the client part and to start by
extending classes from OpenLSD to meet their wishes.

OpenlLSD project is organized in different directories

Server: this part is the kernel part for OpenLSD Server

ServerApp: this part is some applications that should be started from the same server that
runs the OpenL.SD Server itself.

ClientSupport: this part is the kernel part for OpenLLSD Client

ClientApp: this part are for applications that run as Clients (Admin part, Check part,
Session check part) and for the kernel part for the Business support (database access, import
logic, delete logic, ...)

BusinessImpl: this part is the implementation specific part for the Business

WebSupport: this part is the kernel part for the OpenLSD Servlet support

Common: this part is about some global classes need by every package

Multiple: this part is the implementation of some functions in Multiple Legacies mode
support and of the specific Op Handler to maintain the LSD mirroring.

OpenLSD is then subdivided in multiple jars

OpenL.SD-Server.jar: Server and ServerApp parts

OpenL.SD-Common.jar: Common part

OpenL.SD-Web.jar: WebSupport part

OpenLSD-Client.jar: ClientSupport, ClientApp

OpenLSD-Impl.jar: BusinessImpl part

OpenLSD-Multiple.jar: Multiple part (same as Client but in Multiple Legacy Mode plus
the OpHandler)

Here is a presentation of the jars needed according to the functions:

Function Server.jar | Client.jar | Multiple.jar | Web.jar | Impl.jar | Common.jar
OpenLSD Server X X
OpenLSD Client (get, put, X X X X
admin)

OpenLSD Heavy Client X X X X X

(check consistency, init
storage, check binary
similarity, import based on
check similarity)

OpenLSD Web in servlet X X X X X
(with the war from
OpenLSDWebImpl)

Jars can be constructed from “jardesc” on the top of the OpenLLSD Eclipse project. They should be
modified to reflect the localization of the directory that will contain the jar files. To do that, just edit
each file by modifying the following part:

<jar path="D:/ALLJARS/OpenLSD-Server. jar"/>

Some other directories are present in OpenLSD

e Config: files as example for the configuration of OpenLLSD or the database (both Windows
or Unix versions)
Doc: API documentation

e Scripts: file as example to run some specific function as start OpenLLSD Server, shutdown,
import files, Check consistency, Check sessions, Delete files (both Windows or Unix
versions and Windows example for PostGreSQL almost identical to Oracle version)

OpenLSDWeblmpl contains the following examples

e Admin functions (local and distant)
¢ (lient simple functions (get with or without MINA pool of connection, get and put with or
without compression, delete support)

OpenlLSD contains the following example scripts

All of them exist in bat or sh versions. All of them are to be considered as example and not as
production ready. You have to adapt them to your needs.

e Admin functions:

o LSDInitOraFromConfigFiles to initialize values in the database according to the
configuration files in XML,
o LSDServerOra to start LSDServer,
o LSDAdminOraShutdown to stop LSDServer,
o LSDAdminOralnitStorage to create some new Storages in each Legacy.
The main class openlsd.appli.admin.LSDAdmin has more options. You can create new
scripts as needed. Take a look at the code to know what options are available.

e Check functions: multiple options are possible. The following are only some examples.
Check the source code to see more options.

O

O

LSDCheckSession to check the current number of sessions from LSDServer point
of vue

LSDCheckInDBThreadedOra and its DualLimit version to check the consistency
between the LSDServer document and the associated LSD database. The main idea
here is to first load simple definition of each file (technical index and MD35 value),
then to compare them with they internal database representations, and finally to
check the Storage consistency (size and internal values). There are several options
that are supported, such as check without any correction applied, or check with
corrections applied on LSDServer storage only, on database only or both.
LSDCheckDbConsistency to check the consistency within the LSD database only.
It checks the size, the next available index, the deleted index.

LSDCheckSimilar to check if one new document (not already imported) is already
present in one specific Legacy, based on size, MD5 and then binary comparison. It
only runs on the OpenLSD Server that hosts the Legacy and with non crypted
Legacy.

¢ Document handling functions: multiple options are possible. The following are only
some examples. Check the source code to see more options.

O

LSDGetCopy to export copy of files to the outpath directory locally from a source
definition file with an out file including the business index from source file and the
final path to the copied files. The getter should be on the same server than the
LSDServer since the paths are local to the LSD Server.

LSDGetPaths to get real paths of files into the LSD Server storage locally from a
source definition file with an out file including the real path of the original files. The
getter is on the same server than the LSDServer. This function is useful if someone
wants to make a tar of some files as stored in the LSD Server.

¢ Import functions: multiple options are possible. The following are only some examples.
Check the source code to see more options.

O

LSDImportNetOra to import files from a directory through the network interface
using a limited number of database connection from a source definition file. The
importer is not on the same server than the LSDServer.

LSDImportOra to import files one by one from a source definition file using a
limited number of database connection from a source definition file. The importer
must be physically on the same server than LSDServer.

LSDImportOra-BLOCK to import files by group of files from a source definition
file using a limited number of database connection from a source definition file. The
importer must be physically on the same server than LSDServer.
LSDAutoImportOra-fromDir or LSDAutoImportOra-fromDir-Block to import
files one by one from a directory or by a group of files from a directory and as a
permanent importer (so the name auto import). These auto importers have to be
physically on the same server than LSDServer. To stop them, you have to create a
specific file as a shutdown order.

LSDServerImportXXXCheckSimilarOra (where XXX can be empty or BLOCK)
to import files as LSDImportOra or LSDImportOra-BLOCK but using the
CheckSimilar function before the import, so as to check if the document already
exists on a binary comparison check. This function only runs on the OpenLSD
Server that hosts the Legacy and with non crypted Legacy.

e Delete function:

(@)

LSDDelete to delete files from database and LSDServer storage. This function is
obviously sensible.

e Multiple support functions:

O

LSDInitOraFromConfigFilesML to initialize values in the database according to
the configuration files in XML when one Legacy is already defined (add other
legacies only).

LSDInitOpFromDB initializes the Op table from all documents that exist in the
database in order to be able to resynchronize one OpenLSD Server with another one.
It is intend either when one wants to add a mirror function on an existing OpenL.SD
solution without mirror, either to resynchronize files in the mirror after a crash. It
takes as argument the Legacy and the IpPort from which the files will be copied.
Other versions exist like xForStorage (for one storage only) or xPL (using a
PL/SQL procedure to go faster). Also an option concurrent enables to run it while
OpenLSD Server is also running on both import and delete but at the price of slower
run due to synchronization issue.

LSDCheckInDBThreadedOraML and its DualLimit version to check the
consistency between one LSDServer from Multiple Legacies and the associated LSD
database. The main idea here is to first load simple definition of each file (technical
index and MDS5 value), then to compare them with they internal database
representations, and finally to check the Storage consistency (size and internal
values). There are several options that are supported, such as check without any
correction applied, or check with corrections applied on LSDServer storage only, on
database only or both.

LSDImportNetOraML to import files from a directory through the network
interface using a limited number of database connection from a source definition file.
The importer is not on the same server than the LSDServer. This version implies the
use of the Op Handler.

LSDImportOraML to import files one by one from a source definition file using a
limited number of database connection from a source definition file. The importer
must be physically on the same server than LSDServer. This version implies the use
of the Op Handler.

LSDImportOra-BLOCKML to import files by group of files from a source
definition file using a limited number of database connection from a source
definition file. The importer must be physically on the same server than LSDServer.
This version implies the use of the Op Handler.
LSDServerImportXXXCheckSimilarOraML (where XXX can be empty or
BLOCK) to import files as LSDImportOra or LSDImportOra-BLOCK but using the
CheckSimilar function before the import, so as to check if the document already
exists on a binary comparison check. This function only runs on the OpenLSD
Server that hosts the Legacy and with non crypted Legacy.

This version implies the use of the Op Handler.

LSDDeleteML to delete files from database and LSDServer storage. This function is
obviously sensible. This version implies the use of the Op Handler. This function is
for now immediate (delete immediately after asked), it could be later on with a delay
to handle errors of users.

LSDAutoImportOra-fromDirML or LSDAutoImportOra-fromDir-BlockML to
import files one by one from a directory or by a group of files from a directory and
as a permanent importer (so the name auto import). These auto importers have to be

physically on the same server than LSDServer. To stop them, you have to create a
specific file as a shutdown order. This version implies the use of the Op Handler.
LSDOpHandlerML to launch the Op Handler which is responsible to maintain the
consistency between all Legacies that are in relation (replication). It uploads or
deletes documents in other Legacies according to the action taken and registered
using ML versions.

How to install OpenLSD
The main steps to install OpenLSD for the current ATLAS example application are the

following:
[)

Create a database schema from conflsd-oracle.txt or conflsd-postgre.txt (later on will be

available MySQL version) using a database connection. This file is in the Config directory.
One should consider for huge volume to use a partitioned table for LSDDOCUMENT table.
Different options can be implemented, for instance to partition on LID/SID couple or on
IDMETIER (or whatever the business is).

LSDIPPORT
Table for ip and Port of OpenL.SD Server Services

+ID: LONG

Global ID

+IP: STRING
HOST IP or DN'S entry
+PORT: INT

TGP Fort
+FUNCTION: INT
Type of Service
+NAME: STRING
Logical Name
+CONTEXT: STRING
Fropertios

+PK_IPPORT (ID:LONG)
+IDX_IP_IDFUNC (ID:LONG, FUNCTION:INT)

LSDCONTROL

Table to control Consistency Check and ML Ops

1~ JzIn: zowe
, |ro: INT

+IDTP: TONG
+DID: LONG
[+OPDATE: T

LSDSERVICE

[+PR_CONTROL (CF : INT, IDIP : LONG, LID: LONG)

Table for Servics regrouping [pPort

+IDSERVICE: LONG

Global ID for one Service for one Legagy
+IDIP: LONG

Associated idlps

+STATUS: INT

Status of this Service

LSDCHECK

+PR_SERVICE (IDIP:L.ONG, IDSERVICE : LONG)
+IDX SERV_IDS (IDSERVICE:LONG)

Table for Consistency Check

+LID: LONG

LSDLEGACY

Table for Legacy definition

+n1D: TONG
Global ID

+STATUS: INT

+IDADMIN: LONG

Service Id for Admin

+IDUSER: LONG

Service Id for User

“|+IDCOMP: LONG

Service Id for User Compressed
“|+IDPROT: LONG

Service Id for Protected
+s1zELEG: TONG

Size of each Storage in tis Legacy

+NAME: STRING
Name

+SID: LONG
+DID: LONG
+EMPREINT; STRIN
+NOPR-NOTIDX ()

+PR_LEGACY (LID:TLONG)

+IDX_LEG_LIDPROT (IDPROT:LONG, LID: LONG)
+IDX LEG STATUS (LID:LONG, STATUS : INT)

1

1
LSDSTORAGE : !

1

Table for Siorages associated to one Legacy

+LID: LONG

Associated Legacy

+8ID: LONG

id of this Storage

+SIZESTO: LONG

Current available space

+FDA: LONG

Next valid DID index
+HASDEL: INT

[Has Deleied Document property

+PK_STORAGE (SID:LONG,LID:LONG)
+IDX_STO_IID (LID:1ONG)
+IDX_STO IIDSIDSIZE (SID:LONG,LID:LONG, STZESTO: LONG)

LSDOP
Table for Operations for ML support

+IDOP: LONG
Intenal Id

+LID: LONG

+sID: LONG

+DID: LONG
+EMPREINT: STRING
+op: INT

Type of Operation
+STATUS: INT

Status of Operation
=|+1Dp1F: LONG
Associated Idip
+OPDATE: TIMESTAMP
Date of Op realisation

+PK_OP (IDOP: LONG, DID: LONG, SID:LONG, LID:LONG, IDIP : LONG)
+IDX OF STATUSIDOPOPIDIPE (IDOE:TLONG, STATUS: INT, TDIP : LONG, OF: INT)

LSDDOCUMENT

Table for Documents

+11D: ToNG
Associated Legacy

+SID: LONG

Associated Siorage

+p1p: nONG

Index of this dacument
+SIZEDOC: LONG

[Real size of this document

[+ IDMETIER: STRING
Busiess Index

[+DOCDATE: TIMESTAMP
Date of import
[+EMPREINT: STRING
MD5 key

[+ PK_DOCUMENT (DID:LONG, SID:LONG, LID:LONG)

+IDX_DOC_IIDMETTIERDATE (TDMETTER: STRING, LID:LONG, DOCDATE : TIMESTAME)
+IDX_DOC_LIDSIZEDOCMDS (SIZEDOC : LONG, EMPREINT: STRING, LID: LONG)
+IDX_DOC_ISDATE (DOCDATE: TIMESTAMP, SID: LONG, LID:LONG)

Package PKG_OP

+newIndexOpsLocked (in LID:LONG,in SID:LONG,in DID:LONG,in MD5:STRING,in OP:INT, in CURTIME:TIMESTAMP, in NEWIDOP:IONG)
+createldIphrraylocked (in LID:LONG,in IDIP:LONG)
+newIndexOpsNotLocked (in LID:LONG,in SID:LONG,in DID:LONG,in MD5:STRING,in OP:INT,in CURTIME:TIMESTAMP,in IDIP:LONG,in NEWIDOP:LONG)

PROCEDURES

[+REFRESHIDOP ()

[+GETLISTOPTODO (in LIMITNBE:INT, out LISTPRIMARYOP: STRING)
[+ INITOPFRQMDE (in LID:LONG,in SID:LONG,in IDIP:LONG,cut NBOP:LONG)
[+ INSERTDOC (in LID:LONG,in FILESIZE:LONG, out NEWSID:LONG,out NEWDID:LONG,out ERRORTEXT:STRING)

[+ INSERTDOCOP (in LID:LONG, in FILESIZE:LONG, in IDIP:LONG,out NEWSID:LONG,out NEWDID:LONG,out NEWIDOP:LONG,cut ERRCRTEXT:STRING)

+INSERTDOCS (in LID:LONG,in FILESIZE:LONG,in NBFILES:LONG,out NEWSID:LONG,out NEWDIDS:STRING, out ERRORTEXT:STRING)

+ INSERTDOCSOF (in LID:LONG,in FILESIZE:LONG,in NBFILES:LONG,in IDIP:LONG,out NEWSID:LONG,out NEWDIDS:STRING,cut NEWIDOPS:STRING,out ERRORTEXT:STRING)
[+ NEWINDEXOP (cut NEWIDOP:LONG)
+NEWINDEXOPS (in LID:LONG,in SID:LONG,in DID:LONG,in MD5:STRING,in OP:INT,in CURTIME:TIMESTAMP, in IDIP:LONG,cut NEWIDOP:LONG)
[+NEWSIMPLEOP (in LID:LONG,in SID:LONG,in DID:LONG,in MD5:STRING,in OF:INT,in CURTIME:TIMESTAMP,in IDIF:LONG,in IDIFTO:LONG)

Install all jars in a directory you want that will be included in the classpath: all dependent jar

are in ALLJARS.zip. It contains also specific version of some jars like MINA and
Fast_MDS5. If you use a JDKS, you have to recompile jar since they are compiled using

JDKe6.

Install and adapt config files in a directory you want. Config files examples are in the

directory Config in OpenLSD project. Mainly, there are 4 kinds of configuration files:

and legacy configuration files inclusion

[]
1.
2.
3.
4.
[]

directories

openlsd.xml for the LSD Server configuration (ports, functions, but no database)
legacy<n>.xml for Legacy storage configuration (mounting point, size, crypto, ...)
openlsddb.xml for LSD Clients configuration (database access for oracle or postgre)

sif4j-client.xml, slf4j-server.xml and slf4j-web.xml for Log support

Install and adapt scripts from the directory Scripts in OpenLSD project according to

¢ Then you must initialize some values inside the Database. To do that, one can do by hand or
one can use the java script named LSDServerOralnitStorage (bat or sh). Once edited, this
script will take three arguments: the openlsddb.xml file, the openlsd.xml file and the server
IP address or DNS name.

e [f you are the System administrator, you will have to defined filesystems and mount points
such that Storage are correctly set up. To do that, first you have to interact with the database
and the LSD Server using the LSDAdminOralnitStorage (bat or sh). By default, it creates 10
new storages for each Legacy (by default 2).

e Some check can be done by starting LSDAdminOraShutdown (bat or sh): it should be able
to access to the database but not of course to OpenLSD Server. Check the log
(LSDClient.log).

e Second check the start of LSDServer using the script LSDServerOra (bat or sh): it should
start normally. Check the log (LSDServer.log).

e Test again LSDAdminOraShutdown: it should now be able to stop the LSDServer. Check
the logs (LSDClient.log and LSDServer.log).

e Test finally import and delete with any LSD Import scripts and LSD Delete scripts.
You’re done for the main part (Client-Server).
You can also compile C programs using a GCC compiler on any platform or whatever C compatible
compiler. One is a library to be load from Java in Fast_ MD5 package (MDS5.so or dll), the others

are in OpenL.SDC project as two simple executables (checkFileFromPath and openlsddu).

For the Config files, you will find the tomcat example and some hints on the meaning of values.

How to install Tomcat LSD instance with Oracle

This example is using Tomcat 5.5.
You have to install common libraries in tomcat/common/lib:
e Commons apache libraries: (needed by Put functions)
o commons-fileupload-1.2.jar
o commons-io-1.3.2 jar
o commons-codec-1.3.jar
o commons-lang-2.3.jar
e XML support:
o dom4j-1.6.1.jar
o jaxen-1.1.1jar
e MINA and relevant libraries:
Mina-2-M2 (as today): Mina-2-Pre-M2.jar and Mina-2-Pre-M2-ASW-Common.jar
jzlib-1.0.7.jar (compression support)
slf4j-api-1. 5.0.jar (log support)
logback-access-0.9.8.jar
logback-classic-0.9.8.jar
o logback-core-0.9.8.jar
e Factory resource for JDBC from Tomcat: (or any other way to get jdbc database connection)
o commons-el.jar
o naming-factory.jar
o naming-factory-dbcp.jar
O naming-resources.jar
® Oracle support:
o ojdbcl4.jar or ojdbcS.jar or 0jdbc6.jar
o nls_charsetl2.jar or orail8n.jar
e MySQL support:
o mysql-connector-java-5.0.4-bin.jar
e OpenLSD support:
o fast_md5.jar and the relative so or dll library in C if wanted
OpenLSD-Client.jar
OpenLSD-Common.jar
OpenLSD-Web.jar
OpenLSD-Impl.jar

O O O O O

O
(@)
o
(@)

Some of the config files are placed inside the project WAR. You can copy the modified config files
inside the web source project so as they will be included into the final WAR.
For PostGreSQL, you can follow the website from PostGreSQL itself.

How to modify configuration files

context.xml file from tomcat/conf directory:
Here you will have to define the database access through the servlet in a DataSourceFactory. You
can change the value and also the localization of this definition if you know what you do.

<!—— The contents of this file will be loaded for each web application —-->
<Context>
<!—— Default set of monitored resources —-->
<WatchedResource>WEB-INF/web.xml</WatchedResource>
<Resource

name="jdbc/poollsdora"

auth="Container"

type="javax.sgl.DataSource"
factory="org.apache.tomcat.dbcp.dbcp.BasicDataSourceFactory"
maxActive="20"

maxIdle="2"

username="1sd"

maxWait="5000"

driverClassName="oracle. jdbc.OracleDriver"
password="1lsd"
url="jdbc:oracle:thin:@localhost:1521:1sd"/>

<!——Uncomment this to disable session persistence across Tomcat restarts ——>
<!-=
<Manager pathname="" />
——>
</Context>

Here are the possible values:
®* name: the name as seen by the servlet for the DataSource
® maxActive, maxIdle, mawWait: specify the maximum number of active database
connection, of unactive but in the spool connection and the time before the connection is
over
e username and password: specify the user and password for the database access
e url: specify the url in jdbc format to access to the database (here Oracle example)

openlsd.cfg
This file defines the LSD Server configuration (ports, functions, but no database), legacy
configuration files inclusions and SLF4J configuration file inclusion.

<openlsd>
<server>
<timeout>60</timeout>
<blocksize>16277</blocksize>
<fastmd5path>D:/ALLJARS/lib/arch/win32_x86/MD5.dl1l</fastmd5path>
<getfilepath>D:/LSD/getFileFromPath3.exe</getfilepath>
<runlsdpath>D:/Source/OpenLSD/Scripts—
Ora/LSDServerOra.bat</runlsdpath>
<runlsdcheckpath>D:/Source/OpenLSD/Scripts—
Ora/LSDCheckInDbThreadedOra.bat</runlsdcheckpath>
<dfpath>df -kP</dfpath>
<dupath>D:/LSD/openlsddu.exe</dupath>
<slf4jpath>D:/LSDORA/slfdj-server.xml</slf4jpath>
<httpport>8085</httpport>
</server>
<admin>
<port>8082</port>
<compressionserver>false</compressionserver>
<compressionclient>false</compressionclient>
<password>abcdefghijkl</password>
<funcadmin>true</funcadmin>
<funcdel>false</funcdel>
<funcget>true</funcget>
<funcgetna>true</funcgetna>
<funcinfo>true</funcinfo>
<funcmove>true</funcmove>
<funcput>true</funcput>
<funcputna>true</funcputna>
<funcputfile>true</funcputfile>
</admin>
<client>
<port>8084</port>
<compressionserver>false</compressionserver>
<compressionclient>false</compressionclient>
<funcadmin>false</funcadmin>
<funcdel>false</funcdel>
<funcget>true</funcget>
<funcgetna>true</funcgetna>
<funcinfo>false</funcinfo>
<funcmove>false</funcmove>
<funcput>true</funcput>
<funcputna>true</funcputna>
<funcputfile>true</funcputfile>
</client>
<clientcomp>
<port>8081l</port>
<compressionserver>true</compressionserver>
<compressionclient>true</compressionclient>
<funcadmin>false</funcadmin>
<funcdel>false</funcdel>
<funcget>true</funcget>
<funcgetna>true</funcgetna>
<funcinfo>false</funcinfo>
<funcmove>false</funcmove>
<funcput>true</funcput>
<funcputna>true</funcputna>
<funcputfile>true</funcputfile>

</clientcomp>
<protected>

<port>8083</port>
<compressionserver>false</compressionserver>
<compressionclient>false</compressionclient>
<password>abcdefghijkl</password>
<funcadmin>false</funcadmin>
<funcdel>true</funcdel>
<funcget>false</funcget>
<funcgetna>false</funcgetna>
<funcinfo>true</funcinfo>
<funcmove>true</funcmove>
<funcput>true</funcput>
<funcputna>true</funcputna>
<funcputfile>true</funcputfile>

</protected>
<legacy>

<file>D:/LSDORA/legacyl.xml</file>
<file>D:/LSDORA/legacy2.xml</file>

</legacy>

</openlsd>

Here are the possible values:
e Server part

(@)
o

o
o
o

timeout: specify the timeout time of an idle connection in second in OpenLL.SD
blocksize: specify the default block size for OpenLSD (size of minimal
message), should be a multiple of 8K minus 104 bytes. Usually set as 16K minus
104 bytes so 16280.

fastmd5path: specify the path to the filename for the fastMDS5 C library for the
fastMDS5 jar library

getfilepath: specify the path to the filename for the getfilepath C command
runlsdpath: specify the full command to start OpenL.SD from Tomcat
runlsdcheckpath: specify the full command to check consistency in OpenLLSD
and the database

dfpath: path and args for ‘df” command (in Java6, it can be ignored if the module
in LSDConstants is uncommented and allowed)

dupath: path for opendu executable command

s1f4jpath: specify where is the configuration file for sif4j support

httpport: specify the port on which the HTTP Service will listen

¢ C(lients part: admin, client, clientcomp (compressed client) and protected part

o
O

port: specify on which port this client is listening
compressionserver and compressionclient: true to enable compression,
false to disable compression (in general it should be disabled)
severall functions: for each function, specify if this server will enable or not the
support of this function

®= admin (stop, start)

= delete

= getand get with NoAck
= info

" move

= put and put with NoAck and putfile (local put)

e [egacy part

O

file: specify where is the corresponding legacy configuration file

The mapping of the function should be as follow, but one can change this according to specific
needs. We specify the necessity of this support.

Client Port | Compression | Admin | Del | Get | GetNa | Info | Move | Put | PutNa | PutFile
ADMIN X - X - - - X X - - -
Necessity Y Y Y Y
CLIENT X - - - X X - - X X X
Necessity N Y Y Y Y Y
COMP X X - - X X - - X X X
Necessity N Y Y Y Y Y Y
PROTECTED | X - - X | X X X X X X X
Necessity Y Y| Y Y Y Y Y Y Y

legacy<n>.xml
This file defines the Legacy storage configuration (mounting point, size, crypto, ...) that are
included in the openlsd.xml file.

<legacy>

<11d>-9223372036854775807</1id>
<name>MON LEGACYl</name>
<base>d:/LSDORA/Legacyl/files</base>
<outbase>d:/LSDORA/Legacyl/out</outbase>
<storagesize>100000000</storagesize>
<crypted>false</crypted>

<key></key>

<status>true</status>

</legacy>

Here are the possible values:

1id: the numeric unique id of this legacy

name: the logical name of this legacy

base: the path of the base of all storages of this legacy

outbase: the path of the base for the outbase storage of this legacy (export, temporary, ...)
storagesize: the size of each storage of this legacy (should be 10% lower than real
filesystem size)

crypted: set if this legacy is crypted (cannot be changed once set)

key: the associated key of this legacy (cannot be changed once set)

status: the associated status, True meaning fully opened, False meaning close to any
write or delete operations except move operations, read operations are always allowed

openlisddb.cfg

This file defines the LSD Clients configuration (database access and log4j configuration file

inclusion).

<openlsddb>

<driver>oracle. jdbc.OracleDriver</driver>
<server>jdbc:oracle:thin:@localhost:1521:1sd</server>
<user>lsd</user>

<password>lsd</password>
<timeoutcon>3000</timeoutcon>

<timeout>60</timeout>

<blocksize>16277</blocksize>
<slf4jpath>D:/LSDORA/slf4j-client.xml</slf4jpath>
<business>openlsd.business.LSDBusinessImpl</business>

</openlsddb>

Here are the possible values:

driver: which class for the JDBC driver

server: the connect string

user: the user for the database

password: the associated password

timeoutcon: timeout in millisecond when connection is to be done
timeout: timeout of an idle connection in second

blocksize: specify the default block size for OpenLSD (size of minimal message),
should be a multiple of 8K minus 104 bytes. Usually set as 16K minus 104 bytes so 16280.

s1lf4jpath: specify where is the configuration file for slf4j support

business: specify which class implements the LSDBusiness, this class must be in the

classpath

For PostGreSQL, only two values need to be changed:

<driver>org.postgresql.Driver</driver>
<server>jdbc:postgresql://localhost:5432/1sd</server>

slf4j.xml
Each type of client has its own slf4j.xml configuration file. So there is one for the Server, one for
the Client and one for the Web support.

Server version: rotations each day on file
<configuration>
<appender name="FILE"
class="ch.gos.logback.core.rolling.RollingFileAppender">
<file>D:/LSDORA/log/LSDServer2.log</file>
<Append>true</Append>
<BufferedIO>false</BufferedIO>
<ImmediateFlush>true</ImmediateFlush>
<rollingPolicy
class="ch.gos.logback.core.rolling.TimeBasedRollingPolicy">
<FileNamePattern>
D:/LSDORA/log/LSDServer2-%d{yyyy-MM-dd}.log
</FileNamePattern>
</rollingPolicy>
<layout class="ch.gos.logback.classic.PatternLayout">
<Pattern>
$date %$level [%thread] %logger [$file %Smethod : %line] %msg%n
</Pattern>
</layout>
</appender>
<root>
<level value="warn" />
<appender-ref ref="FILE" />
</root>
</configuration>

Client version: rotations each day on file and output
<configuration>
<appender name="FILE"
class="ch.gos.logback.core.rolling.RollingFileAppender">
<file>D:/LSDORA/log/LSDClient2.log</file>
<Append>true</Append>
<BufferedIO>false</BufferedIO>
<ImmediateFlush>true</ImmediateFlush>
<rollingPolicy
class="ch.qgos.logback.core.rolling.TimeBasedRollingPolicy">
<FileNamePattern>
D:/LSDORA/log/LSDClient2-%d{yyyy-MM-dd}.log
</FileNamePattern>
</rollingPolicy>
<layout class="ch.gos.logback.classic.PatternLayout">
<Pattern>
$date %level [%thread] %logger [%file : %line] %msg%n
</Pattern>
</layout>
</appender>
<appender name="STDOUT"
class="ch.gos.logback.core.ConsoleAppender">
<ImmediateFlush>true</ImmediateFlush>
<layout class="ch.gos.logback.classic.PatternLayout">

<Pattern>%date %level [%thread] %logger [%file %method : %$line]
$msg%n</Pattern>
</layout>
</appender>
<root>

<level value="debug" />

<appender-ref ref="FILE" />
<appender-ref ref="STDOUT" />
</root>
</configuration>

Web version: rotations each day on file
<configuration>
<appender name="FILE"
class="ch.qgos.logback.core.rolling.RollingFileAppender">
<file>D:/LSDORA/log/LSDWeb.log</file>
<Append>true</Append>
<BufferedIO>false</BufferedIO>
<ImmediateFlush>true</ImmediateFlush>
<rollingPolicy
class="ch.qgos.logback.core.rolling.TimeBasedRollingPolicy">
<FileNamePattern>
D:/LSDORA/log/LSDWeb-%d{yyyy-MM-dd} . log
</FileNamePattern>
</rollingPolicy>
<layout class="ch.gos.logback.classic.PatternLayout">
<Pattern>
$date %$level [%thread] %logger [%file : %line] %msg%n
</Pattern>
</layout>
</appender>
<root>
<level value="warn" />
<appender-ref ref="FILE" />
</root>
</configuration>

Adapt any value as wanted in openlsd.common.LSDConstants

Some values can be changed to allow different behaviour.
Logging properties:
/ * K
* Mode debug (very verbose)
*/
public static final boolean DEBUG = false;
/ * K
* Mode logging (partially verbose)
*/
public static final boolean LOGGING = false;

External C functions:
/ * *
* Use C functions : only for some specific functions in Server
*/
public static final boolean useCFunctions

true;

Size of internal buffers:
/ * %
* Default size for buffers (NIO)
*/
public static final int BUFFERSIZEDEFAULT

65536; // 64K

Limit Size for switching between Ack and No Acked method for Web retrieve:
/ * *
* Limit size where NoAck method will be used (in Web retrieve functions)
*/
public static final int WEBRETRIEVENOACKLIMIT = 1024000;

Time limit before retry and limit number of retry:
/ * K
* Time elapse for retry in ms
*/
public static final long RETRYINMS = 10;
/ * K
* Number of retry before error
*/
public static final int RETRYNB = 3;

Size of blocks in the filesystems:
/ * *

*

Size of one block in the filesystem: could be later in the Legacy

* definition.
* <pbr>JFS2 supports multiple file system block sizes of 512, 1024, 2048,
* and 4096, with 4 KBytes as standard.
* <pr>EXT3 supports multiple file system block sizes of 1024, 2048 and
* 4096, with 4 KBytes as standard.
* <pbr>NTFS supports sizes of clusters from 512 bytes up to 64 KBytes,
* with 4 KBytes as standard.
*/
public static final long SIZEBLOCKFS = 4096;
/**
* Size of one block in the filesystem (double version): could be later in
* the Legacy definition.
*/

public static final double DSIZEBLOCKFS = 4096.0;

If you use JDKG6 or greater, you can enable this value and uncomment the following code:

/**
* Is this running under JAVA6 (some optimisation)
*/

public static final boolean ISJAVA6 = false;

/**

* Get the Global Used and Free space in KB ONLY FROM JDKG6
* (@param storage
* @return the global and used and free space in KB in long[] or null
*/
private static double[] getGlobalUsedFreeSpaceJavab (File storage) {
double []size = new double[3];
/* JDK6 ONLY

size[0] = storage.getTotalSpace();

size[l] = size[0] - storage.getUsableSpace();
size[2] = storage.getFreeSpace();

*/

return size;

How to extend to a new database support

To extend to another database support (that what I did for PostGreSQL for instance), here are the
main points:
1) Create a static value that identify the database resource in LSDConstants.java:

2)

3)

/**

* Type of DB: MySQL

*/
public static final int typeMySQL 0;
/**

* Type of DB: Oracle

*/
public static final int typeOracle = 1;
/**

* Type of DB: PostGreSQL

*/

public static final int typePostGreSQL = 2;

Create a new directory and class in Client:openlsd.database.data.xxx as the one from mysql
or oracle or postgresql (Client:openlsd.database.data.mysql. LSDMySQLSpecific.java)
Modify the class that masks the underlying database for specific sql codes
(Client:openlsd.database.data.LSDSpecific.java)

